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Abstract 

We present a new form of quantum electrodynamics where the photons are composites made out of zero-dimensional scalar 
“primitives”. The role of the local gauge symmetry is taken over by an injinite-dimensional global Noether symmetry- the 
group of volume-preserving (symplectic) diffeomorphisms of the target space of the scalar primitives. A similar construction 
can be carried out for higher antisymmetric tensor gauge theories. Solutions of the Maxwell equations are automatically 
solutions of the new system. However, the latter possesses additional non-Maxwell solutions which display some interesting 
new effects: (a) a magneto-hydrodynamical analogy, (b) absence of the electromagnetic self-energy for electron plane 
wave solutions, and (c) gauge invariant photon mass generation, where the magnitude of the generated mass is arbitrary. 

1. Introduction 

Systems with an infinite number of conservation 

laws have been extensively studied, because their high 
symmetry allows to extract non-perturbative informa- 
tion and in some instances, e.g., for the completely in- 

tegrable two-dimensional field-theoretic models, even 
to solve them exactly [ 11. It is however hard to find a 

realistic field theory in D = 4 space-time dimensions, 
that allows an infinite number of nontrivial conserved 
charges. 
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In this work we will study a theory which allows 

an infinite number of conservation laws and which is 
at the same time a theory resembling very much the 

most respectable and most tested field theory that we 
know up to date - quantum electrodynamics (QED). 
This is achieved through the substitution of the ordi- 

nary local gauge symmetry of QED (which does not 
lead to conservation laws, but rather to constraints 

on the physical degrees of freedom) by a global 
infinite-dimensional Noether symmetry group - the 
group of volume-preserving (symplectic) diffeo- 
morphisms (see, e.g. [ 21) . An infinite-dimensional 
abelian group, corresponding to the Cartan subalgebra 

of the group of volume-preserving diffeomorphisms, 
has already been identified as a symmetry of a variant 
of the mode1 studied here by one of us [ 31. 

The above mentioned Noether symmetry group 
acts as a group of transformations on a set of primi- 
tive dimensionless scalar fields taking values in some 
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smooth manifold (“target” space) and preserves the 
volume form there. The gauge potential and the gauge 
field strength (the photons) in such a theory are not 
fundamental fields, but rather they are composites of 

these primitive scalar constituents. Under a volume- 
preserving diffeomorphism transformation, the com- 
posite gauge field is transformed by the addition of 
a total gradient while the composite field strength 

is, of course, a volume-preserving-diffeomorphism- 

invariant quantity. It is possible to couple the com- 

posite gauge field to matter fields in the well known 

minimal way so that the gradient that is added to 
the gauge field under a volume-preserving transfor- 
mation on the scalar constituents, is cancelled by an 

appropriate phase transformation of the matter fields. 

If these matter fields are taken to be Dirac fermion 

fields, we obtain a “mini-QED” model that resembles 
very much the usual QED describing the interaction 

of the electromagnetic field with Dirac particles. Fur- 
thermore, if the number of the primitive scalars is 

greater than or equal to D (dimension of space-time), 

any solution of the usual Maxwell equations can be 
expressed (in a non-unique way, in general) through 
the primitive scalars and it is automatically a solution 
of mini-QED equations of motion. 

However, the mini-QED model does not coincide 

completely with QED, since it possesses solutions that 

do not respect the Maxwell equations. These addi- 
tional solutions describe new effects that do not appear 
in the usual formulation of electrodynamics. Among 

these new features we can notice at least the follow- 
ing: (a) a magneto-hydrodynamical analogy, (b) the 

absence of the electromagnetic self-energy for elec- 
tron plane wave solutions, and (c) the generation of 

a gauge invariant photon mass. In addition, as it was 
already observed in a particular variant of the mini- 
QED model [ 31, the idea of substituting local gauge 

invariance with a global infinite-dimensional symme- 
try group can be applied to the construction of mod- 
els with chiral invariance which are totally anomaly 
free (provided that the number of primitive scalars is 
smaller than the dimension of space-time). 

2. Groups of volume-preserving diffeomorphisms 

First, let us recall the basic notions connected 
with groups of symplectic diffeomorphisms and more 

generally the groups of volume-preserving diffeo- 
morphisms on smooth manifolds (see, e.g., [ 21) . Let 
12” be a (2n-dimensional) symplectic manifold with 

a symplectic structure which can always (at least lo- 
cally) be represented in terms of a canonical constant 
anti-symmetric 2n x 2n matrix: 

0 1 0 0 . . . 
-1 0 0 0 . . . 

/]%b// = 0 0 0 1 . . . ’ 0 O-IO... 
. . . . . . . . . . . . . 

(1) 

and let {@,“}~!!t denote the corresponding (local) 

coordinates on ‘T2”. Then the infinite-dimensional 

group SDiff (12”) of symplectic diffeomorphisms 
W’ + Ga (@) on the manifold p” and the associ- 

ated infinite-dimensional Lie algebra SDoifs (p”) of 

infinitesimal symplectic diffeomorphisms G” (a,) z 
W’ + wabdF/J@b are defined as follows: 

SDiff (72”) s W + Ga 

JGC JGd 
C&d--@’ = w,b 

a@ a/ 

(@,> ; 

(2) 

As seen from Eq. (3), the Lie-commutator is nothing 

but the canonical Poisson bracket on 12” with 09~ 
indicating the inverse matrix w.r.t. W,b ( 1) . 

In the simplest case n = 1, W,b = &,b , ~12 = 1, 
and SViff (p) is precisely the algebra of area- 

preserving diffeomorphisms on a two-dimensional 
manifold 12, also known as the w,-algebra when 
12 is a cylinder (for a review, see [4] and refer- 
ences therein), which contains as a subalgebra the 
centerless conformal Virasoro algebra. For example, 
in the case of the torus p = St x St the Lie-algebra 
elements of SDiff (S’ x S’ ) are given by 

n 

r,w =exp(n.*), n=(nl,n2), (4) 
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where (nr , n2) are arbitrary integers. Furthermore, 
SViff (S’ x S’ > allows for a non-trivial central ex- 
tension [ 51 which in the basis {I,} reads 

[Ikr,] =- (nlm2 - n2ml> rnfm - c. nbfm,O 

(5) 

where c = (cl, ~2) denotes the pair of “central 
charges”. 

It is well known that the group SDiff (12”) (2) 
is a subgroup of the group Diff,(l2”) of volume- 
preserving diffeomorphisms on the manifold p. 
Moreover, the group Diff,(l”) exists for manifolds 
of arbitrary (not necessarily even) dimension s: 

Diff,(l’) = Cp” ---f G” (a) ; 

dGbl dGbs 
-...-=F ‘%,A, aQa, aQa’I (6) 

Indeed, it is straightforward to verify that G” (a) de- 

fined in (2) preserves the volume-form ( 1 /s!)E,,...,, 
x da”’ A. . . A dWs on I” where the following simple 

relation was used (for s = 2n): 

~[U,f>, . . . @a5_,a31 = &7,_.u, 9 (7) 

and the square brackets indicate total antisym- 

metrization of indices. Accordingly, the Lie algebra 
Vi ffo (I”) of infinitesimal volume-preserving dif- 
feomorphisms is given by 

arb 
G'(m) da+ra(aq ) s=O 

> 
, 

i.e., 

d abcl...c,_z _r 

cmb 
c, . ..c.-2 . (9) 

3. Field-theory model 

Now, let us consider a set of 2n (zero-dimensional) 
scalar fields {W(x)}~!!, on ordinary Minkowski 
space-time taking values in the symplectic manifold 
12”. Then, the canonical symplectic closed two-form 
I1 on p” naturally leads to the construction of an 

antisymmetric tensor field FPy (m(x) ) on space-time 
satisfying the Bianchi identity and, therefore, allow- 
ing for a potential A, (Q,(x) ) : 

fi = ;w,bd@a AdQb = iFPy (@> dx’l A dx" , (10) 

F,, (@> = w&a,@aa,@b, 

4FA, (Q) + q.LFKA (@I + 4F/.LK (@I = 0 t (11) 

F/w (@I = Q% (@I -&A,(@)> 9 

A,(@)> = +ob@aap@b. (12) 

Clearly, in Eq. ( 12) A, (Cp) is determined up to a a- 
dependent total derivative. 

From the basic definitions (2) and (3) one imme- 

diately finds that the field F,, (a) is invariant under 
arbitrary field transformations (reparametrizations) 

Qa(x) + Ga (a(x)) belonging to the infinite- 

dimensional group SDiff (12”)) whereas its potential 

transforms with a @-dependent total derivative: 

F,, (G(B)) = FPy (*) 1 

(13) 

Eqs. ( 11) -( 13) naturally suggest the interpretation 

of FcLy (a> as an electromagnetic field strength and 

A, (a) as the corresponding vector potential which 
are now composite fields made out of more elemen- 
tary “primitive” zero-dimensional scalar fields W (x) . 

Accordingly, the role of the ordinary local gauge in- 
variance is now taken over by the infinite-dimensional 
SDiff ( p) global Noether symmetry (2). 

Thus, we can consider the following model of 
scalar “primitives” @O(x) coupled to ordinary Dirac 
fermions $I( x) : 

L=--&F&(@) +$[id-d<@> -ml@, ( 14) 

where FPy (@) and A, (a) are given by ( 11) and 
( 12)) respectively, i.e., the Lagrangian ( 14) describes 
QED with a special type of composite “photons”. Let 
us stress that, although being quadrilinear w.r.t. space- 
time derivatives, the Lagrangian ( 14) is only second 
order w.r.t. time-derivatives. 

The model ( 14)) called “mini-QED’, appeared 
previously in [3] from a somewhat different mo- 
tivation. Unlike ordinary QED, however, we now 
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observe that the mini-QED model ( 14) does not pos- 
sess local gauge invariance but rather it is invariant 

under infinite-dimensional global volume-preserving- 

(symplecto-)diffeomorphic SDiff (12”) Noether 

symmetry 6 : 

W(x) -+ G" (Q(x)) M W(x) + w 
abar t@‘(x)) 

fmb(x) ’ 
(15) 

$(x) --f eh(a(x))$(x) , 

A (@(x)) Fz l- (Q(x)) - $Ifyn)~. (16) 

Of course, the Lagrangian ( 14) is also invariant under 

the usual global V( 1) symmetry: $ + en+ , 
a,“. 

w -+ 

4. Equations of motion and symmetries 

First, let us consider even-dimensional space- 

time theories. As already pointed out in [3], in 
the case when the dimension of W,arget space is 

equal to, or greater than, the space-time dimen- 
sion, i.e., dim (72”) 3 2n > D, any vector po- 

tential can be represented (in a non-unique way) 
in the form (12). This is not any more true when 

dim(12”)<D-2, since then the topological den- 

sity .z@U’f12~~+nFfi,pLZ (@) . . f Fp,,_,@,, (@), and even 
the associated topological Chern-Simons current, are 

identically zero: 

=- ;6J,,,,Z.. ,W~“_,ao)&~‘~2+P 

x @“‘a CL2 @d’d P7 @US . . . d PI1 @a” 

=0 (for2n<D-2). (17) 

Here again the square brackets indicate total antisym- 

metrization of indices. Thus, as emphasized in [3], 
mini-QED with a target space of the scalar “primi- 
tives” satisfying the condition dim (p) 5 D - 2 
does not exhibit the usual axial anomalies, 

Similar phenomena occur in odd space-time dimen- 
sions D. Namely, when dim (12”) > D + 1, any vec- 
tor potential can be represented (in a non-unique way) 

d The group parameters yn (cf. Eq. (4) ) are constant space-time 
independent ones. 

in the form ( 12), whereas when dim (12”) 2 D - 1, 
the topological Chern-Simons term is identically zero. 

The equations of motion for (14) are 

a,@” 
( 

-&?,Fp”(@) +&A,4 
> 

=0, (18) 

[ij -$A(@) - m]@ = 0. (19) 

The infinite set of Noether currents corresponding to 

the SDiff (fin) symmetry of (14) reads 

JF[fl = f(Q) $Wpv (@> + $y”$ 
( > 

, (20) 

~/.J”[fl =o, &JP[fl = Jpl(f,ql , (21) 

where f (a) is an arbitrary (smooth) function on the 
@-target space p and Sr indicates an infinitesimal 

symplecto-diffeomorphic transformation ( 15)) ( 16). 
In the particular case of torus target space (4) we have 

n 

The first thing one notices in Eqs. ( IS), ( 19) is 

that the O-equations of motion differ from the usual 

Maxwell equations (with a “composite” vector po- 

tential) just by the contraction of the latter with the 
2n x D matrix ]]c?,@“//. This observation together with 

Eq. ( 17) lead us to the following: 

Main statement (even D). The @-equations of mo- 
tion (18) coincide with the Maxwell ones if and only 
if rank i/d,WII 2 D (cf. Eq. (17)). This implies that 
both the topological Chern-Simons current as well as 
its divergence (the topological density) are non-zero. 

Alternatively, the @-equations of motion ( 18) pos- 
sess non-Maxwell solutions if either the topological 
Chern-Simons current or the topological density are 

zero, i.e., rank jl~?,Wll _< D - 2 (cf. Eq. (17)). 

A completely analogous statement holds for odd 
space-time dimensions D upon substituting D -+ D + 
1 above. 

Therefore, in the sequel we shall be interested in the 
second case, i.e., the case with zero topological Chern- 
Simons current, which implies the existence of a non- 
Maxwell sector of mini-QED ( 14). In particular, when 
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dim (iyZn) - 2n 5 D - 2 mini-QED is generically 

non-Maxwell. It can be viewed as a truncation of a 
model proposed in [6] describing ordinary Maxwell 
I) = 4 QED coupled to a pseudo-scalar “pion” field 4: 

+ ~~~~~~~~~~~~~ + L(4) , (23) 

where L( 4) contains the kinetic and self-interacting 

terms for the “pion”. Ignoring in (23) the purely “pio- 

nit” Lagrangian, e.g., considering the heavy mass limit 
for 6, we see that the field 4 becomes a non-dynamical 
Lagrange multiplier enforcing the constraint for zero 

topological density. Thus, mini-QED is a particukr re- 
alization of the heavy mass limit of the model (23) 
with the additional condition for a vanishing topolog- 

ical Chern-Simons current. 

5. Physical consequences: New effects 

For definiteness, from now on we shall consider 

mini-QED (14) in ordinary D = 4 space-time and 
with a two-dimensional @-target space. 

5.1. Magneto-hydrodynamical analogy 

The existence of non-Maxwell solutions to (18) 

means that there exists a non-zero additional current 
JP (S) , a suitable functional of W, such that 

-&FPV (a) +(I;yC”+ +Jc” (@) =o, 
(‘2 

j~/#~‘J-~ (@) = 0. 

The second equation (24) implies also 

(24) 

+K(@)?“(@) =o, 

I;ln,(*)Jp(B) =o. (25) 

Using the standard three-dimensional Maxwell nota- 
tions, one can rewrite the second equation (25) as 

E(Q) .3(Q) =o, (26) 

-~O(~)E(~)+B(~)X~(~)=O. (27) 

From (27) one easily verifies that non-zero solutions 
for Jp (Q) exist if E (@) . B(Q) = 0 which is 

precisely the expression for zero topological density 

E~“~*F,,~ (@) Fn~ (@). Then, Eq. (27) can be rep- 
resented in the following “magneto-hydrodynamical” 
form (cf. 171): 

(28) 

where v(O) = 3 (@) /Jo (a) can be viewed as a 
@-dependent velocity field. For such velocity, how- 

ever, 1 u 1 may exceed 1. In any case, the condition 

E (a,> . B (@) = 0 guarantees that there is always 
a frame where either the electric field is zero (as in 
usual magnetohydrodynamics) or where the magnetic 
field is zero (“dual magnetohydrodynamics”). 

5.2. Electromagnetic vacuum in mini-QED 

Now, let us consider the mini-QED electron dynam- 

ics in the presence of the electromagnetic vacuum: 

FPy (%,) = 0. (29) 

The general solution to (29) can be taken in the form 
CD;,(x) = u(x) , Q&(x> = B(u(x)), an arbitrary 
local function of u. Then Eqs. ( 19), ( 18) become 

(after an appropriate phase transformation of the Dirac 
field) 

(id - m) lCIvae = 0 

(&icY%ic) d,u ‘= 0. 

(30) 

(31) 

The last equation means that @t,,(x) are constant 
along the straight free-electron world-lines, i.e., 
a@&_(x(r))/& = 0. Thus, one gets usual plane 

wave solutions without the self-energy problem of 
ordinary QED (where one would get that the current 
must vanish simultaneously). 

5.3. Gauge-invariant photon mass generation 

Let us now show that mini-QED built out of two 
primitive scalars describes the propagation of massive 
gauge-invariant modes in 2+ 1 and in 3+ 1 dimensions. 

First, let us consider the 2 + l-dimensional case. 
The basic observation is that the equations of motion 
for mini-QED in the absence of sources, 
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allow, apart from the pure Maxwell solutions where have to select arbitrarily one space dimension which 
a,,Fp” (Q) = 0, also non-Maxwell solutions where we do not want to appear in the solution, let us say Z. 
the primitive scalars obey the following equation: Then, instead of (33) we should use 

a,F@” (Q) =/L(Q) F*p (Q) , 

F*@ (a) = $E~“~F,,, (@) . (33) 

with p (@) being an arbitrary smooth local function 
of V. Consistency of (33) with the “free” mini-QED 

Eq. (32) is easily verified remembering the form of 
FpV (a) = tz,t,apWa,@b. Indeed, substituting (33) 

in the 1.h.s. of (32) one gets 

a,Fp” (Q) = &CL(@) .z~~“~F,, (@) , (37) 

where there is no dependence of any field on Z. 
The physical consequences of a continuous mass 

spectrum, similar to the one found here, have been 

discussed in [ IO]. 

apwayF@v (a) = ;p(a,)~*“aF~~ (ct)) a,W 

= $L (@) Epva Eaa,d”avcpba,W1 = 0, (34) 

where the last equality follows from antisymmetriza- 
tion of three indices taking only two values. 

Furthermore, taking the divergence of Eq. (33) on 

both sides we obtain 

6. Open problems and outlook; mini-QED as an 
induced massive gravity 

The next most important question is quantization 
of the mini-QED model ( 14). Applying formally the 

general arguments of renormalization theory [ II], 
namely that the possible counterterms cancelling the 

ultra-violet divergences must be local, covariant func- 
tionals of the constituent fields of dimension D = 4 

and preserving the global Noether SDiff (12”) sym- 
metry, one easily deduces that these counterterms will 
be exactly the same as in ordinary QED, i.e., the renor- 
malized mini-QED Lagrangian will be of the same 

form as ( 14) with the usual charge-, mass- and mul- 
tiplicative field renormalizations. 

a,a,Ffi” (Q) = 0 = $$apWF*” (a) (35) 

This is consistent since, as we showed in (34), 
a,WF*fi (a) = 0. In the case where p (@) = ,U = 

const., Eq. (33) coincides with the equation of the 
topologically massive Chern-Simons theory (see 

[ 8,9] and references therein). However, the solution 

(33) to mini-QED Eq. (32) exhibits an interesting 

new feature, namely that here the magnitude of the 
mass is not determined, i.e., it could have any value. 

We have found the following solutions for the 

primitive scalar fields aa such that Fpy (a) = 
E&apwa,,@ satisfies the Chern-Simons equation 
(33) with p( @) = ,u = const.: 

Q,’ = -k,x”, 

@* = x, [PPsakp sin( k,xP) + @’ cos( kax”)] . 

(36) 

Here k, is a particle-like momentum vector with k* = 
p2, and s” is any vector satisfying Y’k,, = 0. Thus, Eq. 
(36) provides a solution to the sourceless mini-QED 

equations of motion (32) describing gauge invariant 
massive photons with an arbitrary mass + 

The 2 + 1 -dimensional non-Maxwell mini-QED so- 

lution given above can be easily embedded in the 3+ l- 
dimensional mini-QED given by (32). In this case we 

The problem with ( 14) is, however, that the kinetic 

term for the scalar “primitives” @a is of a non-standard 

quartic form which does not allow to develop the usual 
Feynman diagram expansion. Moreover, if we would 

add to ( 14) an ordinary kinetic term for V, the latter 
would break the SDiff (p) symmetry. Obviously, 
we have to rewrite (14) in an equivalent form with 
the help of auxiliary fields which would bilinearize 
the V-part of the Lagrangian -much in the same way 
one deals with models having four-fermion interaction 
terms. 

Considering again for simplicity two-dimensional 

Q-target space and using the simple identity 

-%b%l = hacabd - ‘%dsbc 1 (38) 

one can represent the first “Maxwell” term in ( 14) as 
follows: 

(39) 
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where v P is the flat Minkowski space-time metric 

tensor. Taking into account (39), the mini-QED La- 
grangian ( 14) acquires the following equivalent form: 

- $e2hpv (qwrlu~ - frlfiuw) hKA 

- ($yV) j-~,,bWa~@~ + $if* . (40) 

Here hp” is an auxiliary symmetric tensor field clas- 
sically given by 

The first term in Eq. (40) indicates that h@” z 
J-gP can be viewed as a composite gravitational 
field (cf. (41)) coupled to the scalar primitives @” 
and being massive (cf. the second term in (40) 7 

with a mass proportional to the square of the elec- 

tric charge. Integrating out the V-fields will produce 
( upon neglecting the fermions) the standard quantum 
effective action of scalar fields in a curved background 

I 131 with the usual divergent cosmological, Einstein 
and R*-terms for h@” E figp”“. Thus, we find an 

intriguing equivalence of the mini-QED model (14) 

with a theory of purely induced and massive gravity 
t 40) which, however, is formally non-renormalizable. 
On the other hand, unlike ordinary gravity (with di- 

mensionless h@” z J-ggfi”” ) the field hp”” in (40) 

has dimension 2 (cf. (41) ) and, therefore, the usual 
divergent non-renormalizable semi-classical expan- 

sion of ordinary gravity interacting with matter fields 
:iround a flat background metric is not appropriate 
for mini-QED in the form (40). Obviously, a bilin- 
earization of mini-QED (14) different from (40) is 

needed for its proper quantization - a question which 
is currently under investigation. 

Another possible venue is to exploit the Ward 

identities for the infinite-dimensional global Noether 
SDiff ( 72n) symmetry [ 14 3 to obtain non-perturba- 
live information for the quantum correlation func- 
tions of mini-QED. In particular, an interesting im- 
portant question arises about the possible quantum 

deformation of the classical Noether SDiff (p”) 
symmetry, e.g., the area-preserving-diffeomorphisms’ 

7 This mass term bears formal resemblance to the f-meson gravi- 

ran mixing mass term in the theory of f-dominance of gravity 

1121. 

SDiff (p) symmetry might acquire central extension 

(5) and/or be deformed into the (centrally extended) 
WI+,-symmetry, as it happens in D = 2 conformal 

field theory (cf., e.g., [ 41) . 

As a final remark, let us point out that the present 
construction can be carried out also for higher anti- 
symmetric tensor (“~-form”) gauge theories (see, 

e.g., [ 15]), for instance - the Kalb-Ramond “2-form” 
gauge model [ 161, where the ordinary local “p-form” 

tensor gauge invariance is substituted with the global 
infinite-dimensional Noether symmetry of volume- 

preserving diffeomorphisms on the p + l-dimensional 
target space of primitive scalar constituents. Here 

again, in general, all solutions of the ordinary tensor 
gauge theories are automatically solutions (as com- 

posites made out of the primitive scalar constituents) 
to the “mini-tensor-gauge” theories, however, the lat- 
ter possess additional solutions absent from the usual 
p-form gauge models. 
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